Intraocular lens

An intraocular lens (IOL) is an implanted lens in the eye, usually replacing the existing crystalline lens because it has been clouded over by a cataract, or as a form of refractive surgery to change the eye's optical power. It usually consists of a small plastic lens with plastic side struts, called haptics, to hold the lens in place within the capsular bag inside the eye. IOLs were traditionally made of an inflexible material (PMMA), although this has largely been superseded by the use of flexible materials. Most IOLs fitted today are fixed monofocal lenses matched to distance vision. However, other types are available, such as multifocal IOLs which provide the patient with multiple-focused vision at far and reading distance, and adaptive IOLs which provide the patient with limited visual accommodation.

Insertion of an intraocular lens for the treatment of cataracts is the most commonly performed eye surgical procedure. The procedure can be done under local anesthesia with the patient awake throughout the operation. The use of a flexible IOL enables the lens to be rolled for insertion into the capsule through a very small incision, thus avoiding the need for stitches, and this procedure usually takes less than 30 minutes in the hands of an experienced ophthalmologist. The recovery period is about 2–3 weeks. After surgery, patients should avoid strenuous exercise or anything else that significantly increases blood pressure. They should also visit their ophthalmologists regularly for several months so as to monitor the implants.

IOL implantation carries several risks associated with eye surgeries, such as infection, loosening of the lens, lens rotation, inflammation and night time halos, but a systematic review of studies has determined that the procedure is safer than conventional laser eye treatment.[1] Though IOLs enable many patients to have reduced dependence on glasses, most patients still rely on glasses for certain activities, such as reading.

Contents

History

Sir Harold Ridley was the first to successfully implant an intraocular lens on November 29, 1949, at St Thomas' Hospital at London. That first intraocular lens was manufactured by the Rayner company of Brighton, East Sussex, England from Perspex CQ Polymethylmethacrylate (PMMA) made by ICI (Imperial Chemical Industries). It is said the idea of implanting an intraocular lens came to him after an intern asked him why he was not replacing the lens he had removed during cataract surgery. The acrylic plastic material was chosen because Harold Ridley noticed that it was inert, after seeing RAF (Royal air Force) pilots of World War II with pieces of shattered canopies in their eyes (this acrylic resin is known by several trade names including Lucite and Plexiglas). The intraocular lens did not find widespread acceptance in cataract surgery until the 1970s, when further developments in lens design and surgical techniques had come about. By the 21st century, more than a million IOLs are implanted annually in the United States.

Materials used for intraocular lenses

Polymethylmethacrylate (PMMA) was the first material to be used successfully in intraocular lenses. British ophthalmologist Sir Harold Ridley observed that Royal Air Force pilots who sustained eye injuries during World War II involving PMMA windshield material did not show any rejection or foreign body reaction. Deducing that the transparent material was inert and useful for implantation in the eye, Ridley designed and implanted the first intraocular lens in a human eye.

Advances in technology have brought about the use of silicone and acrylic, both of which are soft foldable inert materials. This allows the lens to be folded and inserted into the eye through a smaller incision. PMMA and acrylic lenses can also be used with small incisions and are a better choice in people who have a history of uveitis, have diabetic retinopathy requiring vitrectomy with replacement by silicone oil or are at high risk of retinal detachment.

In the United States, a new category of intraocular lenses was opened with the approval by the Food and Drug Administration in 2003 of multifocal and accommodating lenses. These come at an additional cost to the recipient beyond what Medicare will pay and each has advantages and disadvantages.

New FDA-approved multifocal intraocular lens implants allow most post operative cataract patients the advantage of glass-free vision. These new multifocal lenses are not a covered expense under most insurance plans (In the United States, Medicare decided to stop covering them in May 2005) and can cost the patient upwards of $2800 per eye. Latest advances include IOLs with square-edge design, non-glare edge design and yellow dye added to the IOL.

The trade marked "Natural Yellow" this material is relatively new to the market and available in three hydrophilic IOL materials. Dr. Patrick H. Benz of Benz Research and Development created the first IOL material to incorporate the same UV-A blocking and violet light filtering chromophore that is in the human crystalline lens. This break through material provides the exact chromophore the human retina has already specified for light protection.

Multifocal IOLs - provide for simultaneous viewing of both distance vision and near vision. Some patients report glare and halos at night time with these lenses.

Accommodating IOLs - allow for both distance vision and midrange near vision. These IOLs are typically not as strong for closer vision as the multifocal IOLs.

To incorporate the strengths of each type of IOL, some eye surgeons recommend using a multifocal IOL in one eye to emphasize close reading vision and an accommodating IOL in the other eye for further midrange vision. This is called "mix and match." Distance vision is not compromised with this approach, while near vision is optimized.

Other IOLs include:

Phakic, aphakic and pseudophakic IOLs

The root of these words comes from the Greek word phakos 'lens'.

Intraocular lenses for correcting refractive errors

Intraocular lenses have been used since 1999 for correcting larger errors in myopic (near-sighted), hyperopic (far-sighted), and astigmatic eyes. This type of IOL is also called PIOL (phakic intraocular lens), and the crystalline lens is not removed.

More commonly, aphakic IOLs (that is, not PIOLs) are implanted via Clear Lens Extraction and Replacement (CLEAR) surgery. During CLEAR, the crystalline lens is extracted and an IOL replaces it in a process that is very similar to cataract surgery: both involve lens replacement, local anesthesia, both last approximately 30 minutes, and both require making a small incision in the eye for lens insertion. People recover from CLEAR surgery 1–7 days after the operation. During this time, they should avoid strenuous exercise or anything else that significantly raises blood pressure. They should also visit their ophthalmologists regularly for several months so as to monitor the IOL implants. CLEAR has a 90% success rate (risks include wound leakage, infection, inflammation, and astigmatism). CLEAR can only be performed on patients ages 40 and older. This is to ensure that eye growth, which disrupts IOL lenses, will not occur post-surgery.

Once implanted, IOL lenses have three major benefits. First, they are an alternative to LASIK, a form of eye surgery that does not work for people with serious vision problems. Effective IOL implants also entirely eliminate the need for glasses or contact lenses post-surgery for most patients. The cataract will not return, as the lens has been removed. The disadvantage is that the eye's ability to change focus (accommodate) has generally been reduced or eliminated, depending on the kind of lens implanted.

Most PIOLs have not yet been approved by FDA, but many are under investigation, and some of the risks that FDA have been found so far during a three year study of the Artisan Myopia lens (FDA approved in 2004), produced by Ophtec USA Inc, are:

Other risks include:

One of the causes of the risks above is that the lens can rotate inside the eye, because the PIOL is too short, or because the sulcus has a slightly oval shape (the height is slightly smaller than the width).

Types of PIOLs

Phakic IOLS (PIOLs) can be either spheric or toric—the latter is used for astigmatic eyes. The difference is that toric PIOLs have to be inserted in a specific angle, or the astigmatism will not be fully corrected, or it can even get worse.

According to placement site in the eyes phakic IOLs can be divided to:

Accommodating IOLs

One of the major disadvantages of conventional IOLs is that they are primarily focused for distance vision. Though patients who undergo a standard IOL implantation no longer experience clouding from cataracts, they are unable to accommodate, or change focus from near to far, far to near, and to distances in between. Accommodating IOLs interact with ciliary muscles and zonules, using hinges at both ends to “latch on” and move forward and backward inside the eye using the same mechanism as normal accommodation. These IOLs have a 4.5-mm square-edged optic and a long hinged plate design with polyimide loops at the end of the haptics. The hinges are made of an advanced silicone called BioSil that was thoroughly tested to make sure it was capable of unlimited flexing in the eye.[2] There are many advantages to accommodating IOLs. For instance, light comes from and is focused on a single focal point, reducing halos, glares, and other visual aberrations. Accommodating IOLs provide excellent vision at all distances (far, intermediate, and near), project no unwanted retinal images, and produce no loss of contrast sensitivity or central system adaptation. Accommodating IOLs have the potential to eliminate or reduce the dependence on glasses after cataract surgery. For some, accommodating IOLs may be a better alternative to refractive lens exchange (RLE) and monovision.[3]

The FDA approved Eyeonics Inc.’s accommodating IOL, Crystalens AT-45, in November 2003. Bausch & Lomb acquired Crystalens in 2008 and introduced a newer model called Crystalens HD in 2008. Crystalens is the only FDA-approved accommodating IOL currently on the market[4] and it is approved in the United States and Europe.

Studies and Peer Reviews:

In a September 2004 FDA trial involving 325 patients [5] :

Criticisms:

Candidates:

Generally, patients over 50 with cataract problems and no serious eye diseases are good candidates for the procedure. The patient must have functional ciliary muscles or zonules for haptics positioning. In addition, the pupils must dilate adequately, as the IOL will induce glares in low-light environments if the pupils dilate too large. Accommodating IOLs are beneficial not only for patients with cataracts, but also those who wish to reduce their dependency on glasses and contacts due to myopia, hyperopia and presbyopia.

Post-operative care is similar to that of normal IOLs. However, patients must include ophthalmologic exercises such as puzzles and word games as a part of their daily regimen in order to tone up their ciliary muscles and attain the maximum benefit from the accommodating lenses.[11] These exercises should be done consistently for 3–6 months and the patient's performance monitored by their eye care professional.

Other promising multifocal/accommodating IOLs currently in clinical trials include Accommodative 1CU (HumanOptics, Erlangen, Germany), Smartlens (Medennium, Irvine, CA), and dual optic accommodating lenses such as Sarfarazi (Bausch and Lomb, Rochester, NY) and Synchrony (Abbott Laboratories, Abbott Park, IL).

Synchrony IOL is anticipated to receive FDA approval in 2012.

See also

Notes

  1. ^ Barsam A, Allan BDS (2010). Barsam, Allon. ed. "Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia". Cochrane Database of Systematic Reviews (5): CD007679. doi:10.1002/14651858.CD007679.pub2. PMID 20464757. http://onlinelibrary.wiley.com/o/cochrane/clsysrev/articles/CD007679/frame.html. 
  2. ^ Slade, Stephen. “Accommodating IOLs: Design, Technique, Results.” Review of Ophthalmology. 2005. 20 Mar 2009. <http://www.revophth.com/index.asp?page=1_751.htm>
  3. ^ a b “Crystalens Accommodating IOL.” USA Eyes. 2008. Council of Refractive Surgery Quality Assurance. 20 March 2009. < http://www.usaeyes.org/lasik/faq/crystalens-2.htm>
  4. ^ Marilyn Haddrill. "Crystalens & Accommodating Intraocular Lenses for Cataract Surgery". All About Vision. http://www.allaboutvision.com/conditions/accommodating-iols.htm. Retrieved 2010-05-11. 
  5. ^ United States Food and Drug Administration. Center for Devices and Radiological Health (CDRH). Crystalens Model AT-45 Accommodating IOL P030002. New Device Approval. CDRH Consumer Information. Updated Jan 21 2004. http://web.archive.org/http://fda.gov/cdrh/mda/docs/p030002.html
  6. ^ Cummings et al. "Clinical evaluation of the Crystalens AT-45 accommodating interocular lens Results of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg. 2006 May; 32(5): 812-25.
  7. ^ Pepose JS, Qazi MA, Davies J, Doane JF, Loden JC, Sivalingham V, Mahmoud AM. Visual performance of patients with bilateral vs combination Crystalens, ReZoom, and ReSTOR intraocular lens implants. Am J Ophthalmol. 2007 Sep: 144 (3) 347-357.
  8. ^ Macsai et al. Visual outcomes after accommodating intraocular lens implantation. J Cataract Refract Surg. 2006 Apr; 32(4): 628-33
  9. ^ Sanders DR, Sanders ML. Visual performance results after Tetraflex accommodating intraocular lens implantation. Ophthalmology. 2007;114:1679-1684
  10. ^ Glasser, Adrian. “Restoration of accommodation.” Current Opinion in Ophthalmology. 2006 Feb;17(1):12-8.
  11. ^ Paul Koch (2005-09). "An Exercise Program for Crystalens Patients: How to use word search games to help crystalens patients". Ophthalmology Management. http://www.ophmanagement.com/article.aspx?article=86430. Retrieved 2010-05-11. 
  1. ^ Barsam A, Allan BDS (2010). "Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia". Cochrane Database of Systematic Reviews (5): CD007679. doi:10.1002/14651858.CD007679.pub2. PMID 20464757. http://onlinelibrary.wiley.com/o/cochrane/clsysrev/articles/CD007679/frame.html.
  2. ^ Slade, Stephen. “Accommodating IOLs: Design, Technique, Results.” Review of Ophthalmology. 2005. 20 Mar 2009. <http://www.revophth.com/index.asp?page=1_751.htm>
  3. ^ “Crystalens Accommodating IOL.” USA Eyes. 2008. Council of Refractive Surgery Quality Assurance. 20 March 2009. < http://www.usaeyes.org/lasik/faq/crystalens-2.htm>
  4. ^ Marilyn Haddrill. "Crystalens & Accommodating Intraocular Lenses for Cataract Surgery". All About Vision. http://www.allaboutvision.com/conditions/accommodating-iols.htm. Retrieved 2010-05-11.
  5. ^ United States Food and Drug Administration. Center for Devices and Radiological Health (CDRH). Crystalens Model AT-45 Accommodating IOL P030002. New Device Approval. CDRH Consumer Information. Updated Jan 21 2004. http://web.archive.org/http://fda.gov/cdrh/mda/docs/p030002.html
  6. ^ Cumming et al. "Clinical evaluation of the Crystalens AT-45 accommodating interocular lens Results of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg. 2006 May; 32(5): 812-25.
  7. ^ Pepose JS, Qazi MA, Davies J, Doane JF, Loden JC, Sivalingham V, Mahmoud AM. Visual performance of patients with bilateral vs combination Crystalens, ReZoom, and ReSTOR intraocular lens implants. Am J Ophthalmol. 2007 Sep: 144 (3) 347-357.
  8. ^ Macsai et al. Visual outcomes after accommodating intraocular lens implantation. J Cataract Refract Surg. 2006 Apr; 32(4): 628-33
  9. ^ Sanders DR, Sanders ML. Visual performance results after Tetraflex accommodating intraocular lens implantation. Ophthalmology. 2007;114:1679-1684
  10. ^ Glasser, Adrian. “Restoration of accommodation.” Current Opinion in Ophthalmology. 2006 Feb;17(1):12-8.
  11. ^ “Crystalens Accommodating IOL.” USA Eyes. 2008. Council of Refractive Surgery Quality Assurance. 20 March 2009. < http://www.usaeyes.org/lasik/faq/crystalens-2.htm>
  12. ^ Paul Koch (2005-09). "An Exercise Program for Crystalens Patients: How to use word search games to help crystalens patients". Ophthalmology Management. http://www.ophmanagement.com/article.aspx?article=86430. Retrieved 2010-05-11.

References

Manufacturers of IOL

External links

http://www.facebook.com/cataract.surgery Thomas A Oetting, MS MD Professor of Clinical Ophthalmology Director Ophthalmology Residency Program University of Iowa Chief of Eye Service and Deputy Director of Surgery Service Surgical videos